An empirical method for deriving RBE values associated with electrons, photons and radionuclides.

نویسندگان

  • M Bellamy
  • J Puskin
  • N Hertel
  • K Eckerman
چکیده

There is substantial evidence to justify using relative biological effectiveness (RBE) values of >1 for low-energy electrons and photons. But, in the field of radiation protection, radiation associated with low linear energy transfer has been assigned a radiation weighting factor wR of 1. This value may be suitable for radiation protection but, for risk considerations, it is important to evaluate the potential elevated biological effectiveness of radiation to improve the quality of risk estimates. RBE values between 2 and 3 for tritium are implied by several experimental measurements. Additionally, elevated RBE values have been found for other similar low-energy radiation sources. In this work, RBE values are derived for electrons based upon the fractional deposition of absorbed dose of energies less than a few kiloelectron volts. Using this empirical method, RBE values were also derived for monoenergetic photons and 1070 radionuclides from ICRP Publication 107 for which photons and electrons are the primary emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the relative biological effectiveness of the Auger electrons produced during gadolinium neutron capture therapy using microdosimetric approach

Determination of the relative biological effectiveness (RBE) of Auger electrons is a challenging task in radiobiology. In this study, we have estimated the RBE of internal conversion (IC) and Auger electrons released during Gadolinium neutron capture reaction (GNCR) by means of biological weighting functions (BWFs) with microdosimetric approach. Regarding the different distribution of Gadoliniu...

متن کامل

Cellular S-value of beta emitter radionuclide’s determined using Geant4 Monte Carlo toolbox, comparison to MIRD S-values

Introduction: Spatial dose distribution around the radionuclides sources is required for optimized treatment planning in radioimmunotherapy. At present, the main source of data for cellular dosimetry is the s-values provided by MIRD. However, the MIRD s-values have been calculated based on analytical formula in which no electrons straggling is taken to account. In this study, we used Geant4-DNA...

متن کامل

Dosimetric analysis for the selection of radionuclides in bone pain palliation targeted therapy: A Monte Carlo simulation

Introduction:The use of beta emitters is one of the effective methods for palliation of bone metastasis. The risk of normal tissue toxicity should be evaluated in the bone pain palliation treatment. Methods: In this study, the Monte Carlo simulation code MCNPX was used for simulation a bone phantom model consisted of bone marrow, bone and soft tissue. Spe...

متن کامل

Age-dependent small-animal internal radiation dosimetry.

Rats at various ages were observed to present with different radiosensitivity and bioavailability for radiotracers commonly used in preclinical research. We evaluated the effect of age-induced changes in body weight on radiation dose calculations. A series of rat models at different age periods were constructed based on the realistic four-dimensional digital rat whole-body (ROBY) computational ...

متن کامل

Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation protection dosimetry

دوره 167 4  شماره 

صفحات  -

تاریخ انتشار 2015